Factoring

The greatest common factor is the largest positive integer that divides evenly into a set of numbers.

Eg The GCF of 12 and 15 is 3
The GCF of 24 and 36 is 12
The GCF of 15 and 7 is 1
The GCF of 144, 64, 36, and 32 is 4

Find the GCF of these sets of numbers:

a) 72 and 54

b) 8 and 24

c) 80 and 100

d) 144 and 256

e) 45, 81 and 60

f) 10368 and 2160

You can also find the GCF of algebraic expressions:

Eg The GCF of m^2 and m^3 is m^2 The GCF of xy^2 and x^2y is xyThe GCF of $6x^2y^3$ and $3x^3y$ is $3x^2y$

Find the GCF of:

a) m^4 and m^2

b) $3k^5$ and $2k^2$

c) x^4y^3 and x^2y^7

d) 4xy and $2x^2y^2$

e) $3p^3q$, $12p^2q^2$ and $6p^3q^2$

f) $216x^2y^3$ and $96x^3yz^2$

To "factor" an expression, you divide each term by the GCF. This is the exact opposite process of expanding by using the distributive property

Eg: Expand
$$3x(2x+1) -> 6x^2+3x$$

Factor
$$6x^2+3x -> 3x(2x+1)$$

Factor
$$12x^2+6x -> 6x(x+1)$$

Factor
$$18x^4y+12x^3y^2 \rightarrow 6x^3y(3x+2y)$$

Factor these expressions

1)
$$3x + x^2$$

2)
$$5y + 25y^2$$

3)
$$3k^2 + 18k$$

4)
$$7k^3 + 35k^4$$

5)
$$14x^2 + 35x$$

6)
$$5xy^2 + 10x^2y^2$$

7)
$$a^3 + 9a^2 + 3a$$

8)
$$5m^2n^2 + 10m^3n^2 + 25m^2n$$

9)
$$a(a+6) + 7(a+6)$$

10)
$$2x(x+3) + 4(x+3)$$